# Summary of Approach/Rationale

Project Goal

To develop a heat and power system to supply 3-5 kW of grid quality electric power from kerosene/diesel fuel in remote arctic environments

Project Rationale

Fuel and maintenance are high in remote areas because of transportation. Combined heat and power maximizes fuel use. Therefore, distributed power approach

- Technical Approach
   Centered on PEMFC with fuel processing and power conditioning
- Project Approach Team

Sandia National Laboratories (SNL), Livermore, CA Teledyne Brown Engineering (TBE), Hunt Valley, MD Schatz Energy Research Center (SERC)

**Humboldt State University, Arcata, CA** 

Hydrogen Burner Technology (HBT), Long Beach, CA

# Background SERC

#### Schatz Energy Research Center (SERC)

- Working on PEM since 1992
- Primary Interest in Renewable Energy
- 200 w to 9 kW
- Stationary Applications
- Vehicle Applications
- Patented process

# Background HBT

- Experience in hydrocarbon fuel conversion to hydrogen reformate gas through both its 10 year old Phoenix Gas Systems and 2 year old DOE PNGV programs.
- Successful experience with higher hydrocarbon fuel conversion in its patented lower cost straight partial oxidation technology (UOB™).
- Current Commercial Hydrogen Generators PGS Product Line: 600
   SCFH & 4200 SCFH Units:
  - 99.9+% Hydrogen
  - Fuel Flexible
  - <5 PPM CO Levels</p>
  - Skid Mounted Packaging
  - Low Capital Cost

**Other Development Programs** 

# Background TBE

Energy Systems has two product lines, both involving energy conversion and both applicable to this project: electrolysers and power generators

#### **Electrolysers:**

- Industrial quality to world market
- High purity H2/O2
- Wide range 1 slm to 800 slm going up to 2000 slm
- Associated equipment and safety experience

#### **Small Power Generators:**

- Reliable Prime power for remote locations, worldwide
- Thermoelectric, various heat sources
- 2.5 kW long-lived gas-fueled generator
- Other conversion technologies

## Results

- Phase 1 started July 1998.
- In September, SERC delivered a 3kW fuel cell stack to SNL for testing on hydrogen.
- SERC assisted SNL/ UAF with test bench setup
- SNL/UAF set up test benches and tested SERC 3kw stack (Test results published)
- TBE delivered a Model HM50 Hydrogen Generator to SNL (Modified for UAF but not yet installed at UAF)
- HBT developed a scaled-down version of partial oxidation type fuel processor and designed it for kerosene/diesel (Delivered on 3/31/99, not yet tested at SNL)

## Fuel Cell Results

#### **Test Results at SERC**

- 3kW at over 75 amps (250 mA/cm²), steady performance
- stable 3.15 kW at an average 700 mV/cell, for a stack efficiency of 56% (LHV).
- To all appearances, this test could have continued indefinitely

#### **Test Results at SNL**

- Open circuit voltage efficiency: 75%
- At load voltage efficiency: 58%
- Net electrical efficiency (LHV): 48%
- Net electrical efficiency (HHV): 41%

Figure 1 Hydrogen Stack Steady-State Operation - VFC At 3 kW Operating Point 60 80 50--70 40 60 Stack Voltage (volts) Current (amps) Stack: 60 cells, 300 cm2 MEAs: Gore Series 5510, 35 micron, 0.30 mg/cm2 Pt 30 -50 Anode Gas: Hydrogen Pressure: 4 psig Stoichiometry: dead-ended 20 40 Cathode Gas: Air Pressure: <65 "H20 Stoichiometry: 250% 10 Temperature: 60 °C 30 20 0:00:00 0:33:20 1:06:40 1:40:00 2:13:20 2:46:40 3:20:00 Elapsed Time (hr:min:sec)

Figure 2
Hydrogen Stack
Cell-Cell Variation
At 3 kW Operating Point





## HM Series Hydrogen Generator



For on-site generation of high purity hydrogen capacities of 2.8 to 11.2 Nm<sup>3</sup>/h for industrial uses

- \* Convenient and Cost Saving
- \* Microprocessor-Controlled
- \* Designed for Reliability and Safety
- \* Wide Range of Applications
- \* Customized Options Available
- \* Easy Installation
- \* Compressors Can Be Eliminated

# Fuel Reformer



## Plans for Future Work

#### Phase 2 (Feb - Dec 1999)

Continue efforts of Phase 1 so subsystems can be run as a breadboard system.

- Build second fuel cell stack and ancillary components
- Develop a control system for the fuel cell subsystem
- Integrate the fuel cell subsystem with controller
- Integrate fuel cell subsystem with power handling components
- Develop power handling algorithms, integrate into controller
- Test Phase 1 fuel processor
- Retrofit reformer with latest advanced catalyst from HBT's ongoing development
- Build enhanced fuel processor
- Integrate fuel processor into the system

## Plans for Future Work

#### **Phase 3 (Jan - Dec 2000)**

Systems will be fully integrated, packaged, automated, and complete, ready for operational testing in Alaska.

- Analyze results from Phase 2 testing
- Upgrade where necessary
- Integrate heat transfer subsystems
- Package configuration
- Integrate control systems into an overall control package
- Develop top level control algorithms for the heat and power system
- Instrument for testing
- Test

# Status of Economic Evaluation / System Analyses

#### **Total fuel costs depend on:**

- Overall system efficiency (combining heat and power >90%)
- Electrical generation efficiency fuel cell stack demonstrated 56% fuel cell subsystem demonstrated 48% reformer efficiency not yet tested reformer power demand not yet finalized
- Power conditioning efficiency ~90%

Maintenance costs not known yet

#### **Equipment costs**

**Production costs large uncertainty:** 

- Useful life not yet proven
- Commercial forces

## Goals and Basis for Goals

#### **Project Goals**

- To develop a heat and power system to supply 3-5 kW of grid quality electric power from kerosene/diesel fuel in remote arctic environments
- Centered on PEMFC with fuel processing and power conditioning
- Demonstrate the usefulness of such a system

#### **Basis for Goals**

- A system which produces power and whose waste heat is useful in home heating enables more efficient use of fuel in the region
- Support the development of products and infrastructure based on hydrogen utilization

# Major Barriers to Meeting Goals

### **Potential Barriers to Project Goals**

- Performance of the fuel reformer
- Longevity of the fuel reformer
- Longevity of the fuel cell stack

#### **General Barriers**

- Development Cost
- Time to demonstrate that the technical barriers are overcome